The Crystal and Molecular Structure of Thiuret Hydrochloride Hemihydrate ASBJØRN HORDVIK and JORUNN SLETTEN Chemical Institute, University of Bergen, Bergen, Norway The crystal and molecular structure of the unsaturated fivemembered cyclic disulphide, thiuret hydrochloride hemihydrate, has been solved by systematic application of Sayre's equation, and refined by least squares methods using anisotropic temperature parameters. The refinement comprises the h0l, h1l, h2l, h3l, and hk0 reflections, and the final coordinates of the atoms in the thiuret ion have been corrected for the rigid-body libration of the ion. The lengths of the cyclic C-N bonds in the thiuret ion are 1.342 ± 0.010 Å and 1.350 ± 0.009 Å, and the lengths of the exocyclic C-N bonds are 1.315 ± 0.009 Å and 1.303 ± 0.010 Å. The C-S bond lengths are 1.767 and 1.762 ± 0.007 Å, and the S-S bond length is 2.071 ± 0.004 Å. The thiuret ion is essentially planar, and nearly symmetric about an axis through the cyclic nitrogen atom and the midpoint of the sulphur-sulphur bond. The bond lengths show that the ion is stabilized through π -orbital delocalization, the conjugation being most pronounced in the carbon-nitrogen part of the ion. In the crystal, both sulphur atoms of the disulphide group form close contacts (3.315 and 3.272 \pm 0.004 Å) with the same chloride ion, and the indicated bonding may be explained in terms of three- center two-electron bonds. The linear X···S-S···X arrangement which was found in crystals of thiuret hydrociodide and hydrobromide is also present in crystals of thiuret hydrochloride hemihydrate. In the latter compound the chlorine-sulphur distances in this arrangement, are 3.864 ± 0.004 Å and 3.527 ± 0.004 Å, and the interaction between halogen and sulphur is weaker than in thiuret hydroiodide and hydrobromide. The following hydrogen bonds occur in the crystal, N-H···O = 2.870 ± 0.010 Å N-H···N = 3.000 ± 0.010 Å, N-H···Cl = 3.114 and 3.132 ± 0.007 Å, and O-H···Cl = 3.156 ± 0.007 Å 0.006 Å. The unsaturated five-membered disulphide ring of the thiuret ion (I) possesses a sextet of π -electrons and is pseudo-aromatic. While the disulphide group is normally non-planar, with a dihedral angle of about 90° between the planes of the valences of the two sulphur atoms,¹ it has been found to be planar in unsaturated five-membered cyclic disulphides.²⁻⁸ Foss ² has suggested that the stability of the planar disulphide group in these compounds is due to π -bonding in which π -electrons on the sulphur atoms participate. Support for this idea derives from structure investigations of a series of compounds containing an unsaturated five-membered disulphide ring.²⁻⁸ The lengths of the cyclic carbon-sulphur bonds in these compounds are found within the range 1.67-1.78 Å, and the reported values for the sulphur-sulphur bond lengths varies from 2.00 to 2.09 Å. The conjugation in the carbon-sulphur part of an unsaturated five-membered disulphide ring is most pronounced when the substituents to the ring do not, or only to a small degree, take part in π -bonding with ring atoms. In mono-phenyl substituted 1,2-dithiolium ions, for example,^{6,9} the sulphur-sulphur bond length has been found to be 2.00-2.03 Å and the carbon-sulphur bond lengths 1.67-1.71 Å. These values agree, if one assumes a linear relationship bond-order/bond-length, with the bond orders, calculated by Bergson,¹⁰ for the S—S and C—S bonds in the unsaturated 1,2-dithiolium ion. Xanthan hydride and rhodan hydrate, on the other hand, have sulphur-sulphur and carbon-sulphur bond lengths of about 2.06 Å and 1.76 -1.78 Å, respectively.^{4,5} In the latter compounds the cyclic carbon atoms, bonded to the disulphide group, strongly engage in π -bonding with external atoms, at the expense of the conjugation in the carbon-sulphur part of the ring. In the unsaturated five-membered cyclic disulphide, 4-methyl-trithione, only one of the carbon atoms, bonded to the disulphide group is engaged in π -bonding with an external atom.³ Thus, according to the above, one might expect the conjugation in the disulphide group of this compound, to be somewhat more pronounced than in xanthan hydride and rhodan hydrate. The length of the C—S bond on the thione side of the disulphide ring in 4-methyl-trithione is 1.747 ± 0.017 Å and the length of the C—S bond on the other side of the ring is 1.713 ± 0.017 Å. Furthermore, the length of the sulphur-sulphur bond is reported to be 2.047 ± 0.007 Å, and Jeffrey and Shiono³ conclude that this sulphur-sulphur bond is a pure single bond. The present authors believe that the mentioned sulphur-sulphur bond has some double bond character and that 4-methyl-trithione, from what has been said above, and as far as the conjugation in the disulphide group concerns, may be regarded as intermediate between the 1,2-dithiolium ion on one side, and xanthan hydride and rhodan hydrate on the other. Bergson ¹⁰ has calculated the π -bond order of the sulphur-sulphur bond in 4-methyl-trithione to be 0.242. The question whether and to which degree the close contacts between halogen and sulphur, found in crystals of thiuret hydroiodide² and hydrobromide,⁸ affects the sulphur-sulphur bond, incited the present investigation of thiuret hydrochloride hemihydrate. The close contacts occur in approximately linear X···S—S···X arrangements, and may influence the length of the sulphur-sulphur bond through transfer of charge from the halide ion to those p-orbitals of sulphur already engaged in the sulphur-sulphur σ -bond. One may expect the strength of this partial bonding to decrease with increasing electronegativity of the halide ion, and whether it affects the length of the sulphur-sulphur bond in thiuret hydroiodide and hydrobromide might therefore be revealed through a structure investigation of thiuret hydrochloride hemihydrate. ### **EXPERIMENTAL** The unit cell and space group of thiuret hydrochloride hemihydrate have been reported by Foss.¹¹ The crystals are monoclinic, with the unit cell dimensions (redetermined): a=19.53 Å, b=5.47 Å, c=14.31 Å, and $\beta=114.5^\circ$. The experimental error is estimated to be within 0.2 %. There are eight formula units per unit cell and the space group is C2/c. The intensities of the h0l, h1l, h2l, h3l, and hk0 reflections were estimated by eye from sets of Weissenberg photographs, taken with $CuK\alpha$ radiation. A crystal with cross-section 0.16×0.27 mm was used for the recordings around the b axis; for the hk0-recordings a crystal with cross-section 0.3×0.08 mm was used. 852 independent reflections were obtained and measured. The intensities were corrected for Lorentz and polarization effects but not for absorption. Common reflections in h0l, h1l, h2l, h3l, and hk0 were used to put all the reflections on the same scale. The calculated structure factors in Table 12 are based on the atomic scattering curves for chloride ion, sulphur, oxygen, nitrogen, carbon and hydrogen which are given in the *International Tables*, the first set of the listed scattering factors for carbon being used. ## STRUCTURE DETERMINATION Direct solution. The structure was solved in the b-axis projection by means of Harker Kasper inequalities and systematic use of Sayre's equation, and a brief account of this has been reported earlier. A more detailed description of the procedure is given here. Observed hol structure factors were put on an absolute scale by means of Wilson's method, ¹³ and unitary structure factors were calculated for the strongest reflections. The u-values, found in this way, later proved to be about 30 % too high. The signs for 406 and $14,0,\overline{14}$ were chosen positive, and combination of these two reflections in a Harker Kasper inequality gave the sign for $18,0,\overline{8}$. The signs for 12,0,4, 10,0,0, $12,0,\overline{2}$, and $12,0,\overline{12}$ were denoted a,b,c, and d, respectively, and sixteen sets of probable signs were derived, by means of Sayre's equation $S_h \cdot S_{h'} \approx S_{h+h'}$, for the 37 reflections in Table 1. This could be reduced to four sets of probable signs by taking into account the derived relationships between b,c, and d; see for instance derived signs for $10,0,0,80\overline{8}$ and $12,0,\overline{12}$ in Table 1. Furthermore, one of the remaining four sign sets could be regarded as unlikely because it had all signs positive. Fourier maps corresponding to the three sets of probable signs were computed, and the molecule was recognized in one of them. This Fourier map, shown in Fig. 1, has a = +, b = c = -, and d = +, and all derived signs later proved to be correct. | Table 1. | Unitary | structure | factors | and | probable | signs | for | the | h0l | reflections | used | in t | the | |----------|---------|-----------|---------|-----|------------|-------|-----|-----|-----|-------------|------|------|-----| | | • | | | | cture dete | | | | | | | | | | h | l | 100u | sign | h | l | 100u | sign | |----|----------|------|------------------|----|-------------|-----------|------------------| | 0 | 16 | 42 | ad | 2 | 8 | 37 | bc | | 10 | 0 | 90 | b, dc | 4 | 8 | 63 | \boldsymbol{a} | | 16 | 0 | 42 | abd | 8 | -8 | 78 | b, c | | 2 | 2 | 36 | ab | 14 | -8 | 51 | abd | | 8 | -2 | 65 | \boldsymbol{a} | 18 | -8 | 84 | + | | 12 | -2 | 68 | $oldsymbol{c}$ | 24 | -8 | 73 | ad | | 18 | -2 | 37 | ab | 16 | -10 | 65 | ab | | 22 | 2 | 63 | bc | 20 | -10 | 50 | bc | | 2 | 4 | 56 | ab | 4 | 12 | 42 | ab | | 6 | 4 | 38 | bc, d | 2 | 12 | 46 | \boldsymbol{c} | | 12 | 4 | 106 | \boldsymbol{a} | 6 | -12 | 40 | \boldsymbol{a} | | 16 | 4 | 49 | $oldsymbol{c}$ | 12 | -12 | 72 | d, $+$ | | 4 | -4 | 49 | bd | 22 | -12 | 41 | bd | | 20 | -4 | 71 | ac | 4 | 14 | 78 | b | | 4 | 6 | 84 | + | 10 | — 14 | 47 | abd | | 14 | 6 | 60 | \boldsymbol{b} | 14 | -14 | 78 | + | | 6 | -6 | 43 | b, c | 20 | -14 | 76
| ad | | 10 | -6 | 38 | abc | 10 | 16 | 36 | abd | | 16 | -6 | 50 | d | | | | | Fig. 1. Fourier map of thiuret hydrochloride hemihydrate in the b-axis projection, based on the 37 reflections in Table 1. with a=+, b=c=- and d=+. Contours at arbitrary but equal intervals. Structure refinement. The y-coordinates for the atoms in the thiuret ion were estimated by taking into account that the thiuret ions, as indicated by the b-projection, were arranged in pairs over centers of symmetry through N—H···N hydrogen bonds of length about 3.0 Å. Such an arrangement of thiuret ions was found in thiuret hydrobromide, the N—H···N distance there being 3.07 Å. Furthermore, an approximately linear Cl···S—S···Cl arrangement was assumed, from the X···S—S···X arrangements found in thiuret hydroiodide and hydrobromide. The y-coordinate of the water oxygen on the twofold axes was estimated by assuming that there probably would be hydrogen bonds between the oxygen atom and two chloride ions. The structure was refined by least squares methods on an IBM $1620^{\text{ II}}$ computer, using a program designed by Mair. 14 Weighting scheme No. 3, recommended by Mair, was used with a = 12 and b = 7.5. The refinement comprises the hol, hll, h2l, h3l, and hk0 reflections, and was carried out with anisotropic temperature factors for all atoms except the hydrogens, which were given isotropic temperature factors. Final value of the agreement factor $R = \sum ||F_0| - |F_c||/\sum |F_0|$ is 0.059. Eight low order reflections, supposed to | Table 2. | Final aton | ic coordinates | from the | e least s | quares | refinement. | |----------|------------|----------------|----------|-----------|--------|-------------| | | | | | | | | | Atom | \boldsymbol{x} | $oldsymbol{y}$ | \boldsymbol{z} | |---|------------------|----------------|------------------| | Cl | 0.11067 | 0.25841 | 0.18718 | | $\mathbf{S_1}$ | 0.20221 | 0.81731 | 0.12798 | | S. | 0.09096 | 0.81664 | 0.02381 | | $\mathbf{S_2}$ $\mathbf{N_1}$ | 0.2923 | 0.4716 | 0.1136 | | N_2 | 0.1697 | 0.4463 | -0.0077 | | N_s | 0.0426 | 0.4605 | -0.1121 | | $\mathbf{C_i}$ | 0.2232 | 0.5545 | 0.0736 | | $\tilde{\mathbf{C}}_{2}^{1}$ | 0.1016 | 0.5517 | -0.0383 | | o' | 0.0000 | -0.0513 | 0.2500 | | $\mathbf{H_1}$ | 0.299 | 0.336 | 0.093 | | H. | 0.323 | 0.530 | 0.178 | | $\mathbf{H_{2}^{'}}$ $\mathbf{H_{3}^{'}}$ | 0.047 | 0.358 | -0.147 | | $\widetilde{\mathbf{H}}_{4}^{3}$ | -0.003 | 0.521 | -0.133 | | $\widetilde{\mathbf{H}}_{5}^{4}$ | -0.030 | 0.047 | 0.250 | Table 3. Components of atomic vibration tensors Ur in Å2, referred to crystallographic | Atom | U_{11} | $oldsymbol{U_{22}}$ | $oldsymbol{U_{33}}$ | $U_{\scriptscriptstyle 12}$ | $oldsymbol{U_{23}}$ | $oldsymbol{U_{31}}$ | |---|----------|---------------------|---------------------|-----------------------------|---------------------|---------------------| | Cl | 0.0348 | 0.0632 | 0.0453 | 0.0133 | 0.0128 | 0.0178 | | $\mathbf{S_1}$ | 0.0348 | 0.0509 | 0.0376 | 0.0023 | -0.0084 | 0.0148 | | \mathbf{S}_{\bullet}^{T} | 0.0333 | 0.0525 | 0.0433 | 0.0085 | -0.0017 | 0.0161 | | $egin{array}{c} \mathbf{S_2} \\ \mathbf{N_1} \\ \mathbf{N_2} \\ \mathbf{N_3} \end{array}$ | 0.0330 | 0.0595 | 0.0397 | 0.0069 | -0.0131 | 0.0071 | | N, | 0.0296 | 0.0446 | 0.0350 | 0.0043 | -0.0011 | 0.0128 | | N_3 | 0.0271 | 0.0648 | 0.0439 | 0.0058 | -0.0041 | 0.0069 | | $\mathbf{C_i}$ | 0.0292 | 0.0619 | 0.0297 | 0.0008 | 0.0014 | 0.0153 | | C_2 | 0.0292 | 0.0532 | 0.0338 | 0.0029 | 0.0012 | 0.0134 | | o o | 0.0488 | 0.0606 | 0.0571 | 0.0000 | 0.0000 | 0.0251 | Final B-values, in the expression exp $[-B(\sin^2\theta/\lambda^2)]$ for the hydrogen atoms $H_1...H_s$, are -0.1, 0.7, 1.9, 1.7, and 1.8 $^{\text{A}^2}$, respectively. be affected by secondary extinction, were excluded from the least squares refinement. These reflections, marked with asterisks in Table 12, were included in the final structure calculations with $F_{\rm o}=F_{\rm c}$. Atomic coordinates and components of atomic vibration tensors ${\bf U}^{\rm r}$ are given in Tables 2 and 3. The observed and calculated structure factors are Fig. 2. Electron density map of the thiuret ion, showing the electron density in the plane of the ion. Contour intervals for carbon and nitrogen 1 e.Å⁻³ and for sulphur 2 e.Å⁻³. Lowest contour at 1 e.Å⁻³. Fig. 3. Electron density map in the plane of the thiuret ion with all atoms but the hydrogens subtracted. Contour intervals of 0.1 e.Å⁻³ starting at 0.3 e.Å⁻³. listed in Table 12. An electron density map, showing the electron density in the plane of the thiuret ion is given in Fig. 2, and a corresponding electron density map with all atoms except the hydrogens subtracted is given in Fig. 3. Thermal analysis. Cruickshank ¹⁵ has shown how the libration and translation of a rigid molecule can be deduced from the anisotropic thermal vibrations of its different atoms. The method presupposes that the axes of libration intersect in a known point, such as a center of symmetry. Hirshfeld ¹⁶ suggests that the libration centre can not, in most cases, be located a priori, and has modified Cruickshank's method accordingly. The computer program used in the rigid-body calculations referred to below is written in FORTRAN II by Hirshfeld, and the calculations were carried out on the IBM $1620^{\text{ II}}$. An orthogonal molecular coordinate system L, M, N was chosen such that L and M are in the plane of the thiuret ion and N perpendicular to this plane. The origin is in an approximate center of gravity and the directions of L, M, and N are the directions of the principal axes of inertia. The direction cosines of L, M, and N with respect to the crystallographic axes are given in Table 4 together with the coordinates of the origin. Coordinates and vibration tensors of the atoms in the thiuret ion (except hydrogen), were transformed to the molecular coordinate system, and the transformed values are given in Tables 5a and 6. The rigid-body parameters of the thiuret ion were calculated according to Hirshfeld's procedure, 16 with triple weight on the sulphur atoms, and the final values of the translation and libration parameters are given in Table 7. Components of atomic vibration tensors as calculated from the rigid-body parameters are listed in Table 6. Principal components of the rigid-body vibrations and their direction cosines with respect to molecular axes together with the coordinates of the libration center are given in Table 8. The coordinates of the atoms in the thiuret ion were corrected for rigid-body libration according to Cruickshank's method.¹⁷ The corrected coordinates are listed in Table 5b. Table 4. Origin, and direction cosines of the axes L, M, N of the molecular coordinate system, referred to crystal axes. | | a | \boldsymbol{b} | $oldsymbol{c}$ | |----------------|---------|------------------|----------------| | $oldsymbol{L}$ | -0.7631 | -0.0085 | -0.2716 | | M | -0.3724 | 0.8230 | 0.5448 | | N | -0.5282 | -0.5680 | 0.7934 | Origin at x = 0.1553, y = 0.6715, z = 0.0441 Table 5. Atomic coordinates in the coordinate system $L,\,M,\,N\,$ (a) final coordinates from the least squares refinement, (b) the latter values corrected for rigid-body libration. | | | (a) | | | (b) | | |---------------------------|--------|--------|--------|--------|--------|--------| | Atom | L (Å) | M (Å) | N (Å) | L (Å) | M (Å) | N (Å) | | $\mathbf{S_1}$ | -1.031 | 0.970 | 0.016 | -1.035 | 0.975 | 0.016 | | $\mathbf{S_2}$ | 1.031 | 0.964 | -0.017 | 1.035 | 0.969 | -0.017 | | $\mathbf{N}_{\mathtt{1}}$ | -2.302 | -1.345 | -0.002 | -2.311 | 1.356 | -0.001 | | N_2 | -0.002 | -1.521 | -0.035 | -0.002 | -1.524 | -0.035 | | N_3 | 2.298 | -1.347 | 0.046 | 2.306 | -1.349 | 0.046 | | $\mathbf{C_1}$ | -1.120 | -0.789 | 0.000 | -1.124 | -0.790 | 0.000 | | C_2 | 1.127 | -0.790 | -0.008 | 1.131 | -0.790 | -0.008 | Table 6. Components of atomic vibration tensors V^r in $Å^2$ as found by the least squares refinement (exp) and as calculated from the rigid-body parameters (RB). | Atom | V_{LL} | V_{MM} | V_{NN} | $V_{L\dot{M}}$ | V_{MN} | V_{LN} | |--|--------------------|--------------------|--------------------|----------------------|----------------------|----------------------| | $S_1 (exp) (RB)$ | $0.0352 \\ 0.0342$ | $0.0367 \\ 0.0407$ | $0.0515 \\ 0.0511$ | $-0.0002 \\ -0.0011$ | -0.0100 -0.0099 | $-0.0011 \\ -0.0008$ | | S_2 (exp) (RB) | $0.0354 \\ 0.0342$ | $0.0413 \\ 0.0407$ | $0.0520 \\ 0.0529$ | $-0.0082 \\ -0.0061$ | $-0.0080 \\ -0.0087$ | $0.0000 \\ 0.0003$ | | $N_1(\exp) \ (RB)$ | $0.0303 \\ 0.0311$ | $0.0390 \\ 0.0471$ | $0.0708 \\ 0.0681$ | $-0.0003 \\ -0.0061$ | $-0.0108 \\ -0.0103$ | $0.0032 \\ 0.0003$ | | $egin{aligned} \mathbf{N_2}(\mathbf{exp}) \ (\mathbf{RB}) \end{aligned}$ | $0.0304 \\ 0.0315$ | $0.0374 \\ 0.0390$ | $0.0419 \\ 0.0367$ | $-0.0039 \\ -0.0036$ | $-0.0060 \\ -0.0094$ | $0.0002 \\ 0.0000$ | | $N_3(\exp) \ (RB)$ | $0.0264 \\ 0.0311$ | $0.0528 \\ 0.0470$ | $0.0643 \\ 0.0655$ | $-0.0045 \\ -0.0010$ | $-0.0087 \\ -0.0111$ | $0.0003 \\ -0.0006$ | | $^{\mathrm{C_3}\mathrm{(exp)}}_{\mathrm{(RB)}}$ | $0.0308 \\ 0.0304$ | $0.0508 \\ 0.0410$ | $0.0360 \\ 0.0403$ | $-0.0024 \\ -0.0039$ | $-0.0169 \\ -0.0095$ | $-0.0011 \\ 0.0002$ | | $^{\mathrm{C_2}}\left(\mathrm{exp} \right) \ \mathrm{(RB)}$ | $0.0303 \\ 0.0304$ | $0.0457 \\ 0.0410$ | $0.0398 \\ 0.0400$ | $-0.0037 \\ -0.0033$ | -0.0099 -0.0096 | $-0.0002 \\ 0.0004$ | Table 7. Final rigid-body translation parameters T_{ij} and libration parameters ω_{ij} . | | LL | MM | NN | LM | MN | LN | | |------------------------------|----------|----------|----------|-----------|-----------|----------|--| | T (Å) | 0.03036 | 0.03908 | 0.03250 | -0.00364 | -0.00922 | 0.00032 | | | ω (rad ²) | 0.005221 |
0.005967 | 0.001528 | -0.000310 | -0.000287 | 0.000270 | | Table 8. Principal components of rigid-body vibrations, with direction cosines, and coordinates of libration centre, referred to molecular axes. | | $oldsymbol{L}$ | $m{M}$ | N | |---------------------------------------|----------------|---------|---------| | $T_1{}^2 = 0.0462 \text{ Å}^2$ | 0.1971 | -0.9081 | -0.3693 | | $T_{2}^{-2} = 0.0304$ | -0.8114 | 0.0603 | -0.5813 | | $T_{3}^{-2}=0.0252$ | 0.5502 | 0.4143 | -0.7249 | | $\omega_1^2 = 0.0060 \mathrm{rad}^2$ | -0.3258 | 0.9421 | 0.0779 | | $\omega_2^2 = 0.0051$ | 0.9445 | 0.3209 | 0.0691 | | $\omega_{3}^{2} = 0.0014$ | 0.0400 | 0.0961 | -0.9945 | Libration centre at L = 0.005, M = 0.622, N = 0.021. The amplitudes of translational motion in directions of the principal axes are, according to the values in Table 8, 0.16, 0.18, and 0.22 Å, and the amplitudes of libration about principal axes are 2.1, 4.1, and 4.4°. The libration center lies 0.62 Å off the origin of the molecular coordinate system in direction towards N_2 . Minimum libration occurs about an axis through this center and approximately perpendicular to the molecular plane. The libration amplitudes around the two other principal axes are nearly equal, 4.1 and 4.4°, and the axes lie nearly in the plane of the molecule, roughly parallel to M and L, respectively. Table 9. Bond lengths (l) and standard deviation in bond lengths $\sigma(l)$ in the thiuret ion; values in parenthesis are without correction for rigid-body libration. | Bond | l (Å) | $\sigma\left(l ight)\left(m \AA ight)$ | |--|--|---| | $\begin{array}{c} S_1 - S_2 \\ S_1 - C_1 \\ S_2 - C_3 \\ C_1 - N_2 \\ C_2 - N_2 \\ C_1 - N_1 \\ C_2 - N_3 \end{array}$ | $\begin{array}{ccc} 2.071 & (2.063) \\ 1.767 & (1.761) \\ 1.762 & (1.756) \\ 1.342 & (1.337) \\ 1.350 & (1.345) \\ 1.315 & (1.310) \\ 1.303 & (1.298) \end{array}$ | 0.004
0.007
0.007
0.010
0.009
0.009
0.010 | | $egin{array}{c} N_1-H_1 \ N_1-H_2 \ N_3-H_3 \ N_3-H_4 \ \end{array}$ | 0.83
0.93
0.77
0.89 | 0.1
0.1
0.1
0.1 | Fig. 4. Bond lengths (Å) and bond angles (°) in the thiuret ion. Table 10. Bond angles and standard deviation in bond angles in the thiuret ion; values in parenthesis are without correction for rigid-body libration. | | \mathbf{Angle} (°) | σ (°) | |--|----------------------|-------| | $C_1 - S_1 - S_2$ | 92.7 (92.7) | 0.3 | | $S_1-C_1-N_2$ | 120.3 (120.3) | 0.5 | | $S_1 - C_1 - N_1$ | 118.4 (118.4) | 0.6 | | $\mathbf{N_1} - \mathbf{C_1} - \mathbf{N_2}$ | 121.3 (121.3) | 0.6 | | $C_1-N_2-C_2$ | 113.8 (113.8) | 0.6 | | $S_2-C_2-N_2$ | 119.9 (119.8) | 0.5 | | $S_2 - C_2 - N_3$ | 118.5 (118.5) | 0.5 | | $\vec{N_2} - \vec{C_2} - \vec{N_3}$ | 121.6 (121.7) | 0.6 | | $S_1-S_2-C_2$ | 93.2 (93.3) | 0.3 | ### DISCUSSION The thiuret ion. Bond lengths as calculated from the coordinates in Table 5b, are listed in Table 9 and shown in Fig. 4. An assumed 0.1 % standard deviation in cell dimensions has been included in the listed standard deviation in bond lengths. Bond angles calculated from the coordinates in Table 5b are listed in Table 10 and shown in Fig. 4. The thiuret ion is essentially planar; the equation for the least squares plane of the molecule, excluding the hydrogen atoms and with double weight on the sulphur atoms is $$-10.3164x - 3.1068y + 11.3535z = -3.1888$$ where x, y, and z are the fractional coordinates with respect to the crystallographic axes. The N-coordinates in Table 5 give the distances of different atoms from the molecular plane, and show that S_1 , S_2 , N_2 , and N_3 probably are slightly out of the plane. A least squares plane for the atoms of the five-membered ring was then calculated with triple weight on the sulphur atoms. The distances in Å of the different atoms in the thiuret ion from this plane are S_1 (0.003), S_2 (-0.005), C_1 (0.001), C_2 (0.020), N_1 (-0.009), N_2 (-0.015), and N_3 (0.094). The five-membered ring is thus planar within the error; one of the exocyclic nitrogen atoms (N_1) lies in the plane, while the other (N_3) lies significantly out of the plane by 0.094 Å. In thiuret hydrobromide the thiuret ion is found to be planar.⁸ For thiuret hydroiodide a non-planar disulphide ring is indicated ² but this is probably related to the uncertainty of the atomic coordinates of carbon and nitrogen in the structure. Bond lengths and angles, cf. Fig. 4, show that in thiuret hydrochloride hemihydrate an approximate mirror plane occurs perpendicular to the molecular plane and through N_2 and the midpoint of the sulphur-sulphur bond. Such a mirror plane is crystallographically required in thiuret hydroiodide. Bond lengths and bond angles in the thiuret ion, as found in the present investigation, deviate by less than one standard deviation from corresponding bond lengths and angles in the symmetric model arrived at by averaging the dimensions of the two halves of the ion. The slight difference in bond lengths between cyclic and exocyclic carbon-nitrogen bonds found for thiuret hydrochloride hemihydrate is probably significant. Thus the average length of cyclic C—N bonds is 1.346 Å and of exocyclic C—N bonds 1.309 Å. By assuming the thiuret ion to be symmetric, the corresponding standard deviation in C—N bond lengths becomes 0.007 Å, and the difference between cyclic and exocyclic C—N bond lengths is then more than five times this figure. The value 1.346 \pm 0.007 Å for the cyclic C—N bond lengths agrees with the aromatic C—N bond length, 1.340 Å, found in pyridine. In the unsaturated five-membered cyclic disulphide xanthan hydride, the average value of cyclic C—N bond lengths is 1.343 \pm 0.011 Å, and also in this compound the exocyclic C—N bond is found to be shorter, 1.307 \pm 0.011 Å, than the cyclic C—N bond. The latter C—N bond lengths are not corrected for rigid-body libration, and are as should be expected, somewhat smaller than the corrected values for thiuret hydrochloride hemihydrate. The carbon-sulphur bonds in thiuret hydrochloride hemihydrate, 1.762 and 1.767 \pm 0.007 Å, are shorter than single bonds. This is clearly seen through a comparison with the saturated five-membered cyclic disulphide, 1,2-dithiolane-4-carboxylic acid, 18 where the C-S bonds are found to be 1.83 and 1.85 ± 0.02 Å. Even if the carbon atoms bonded to sulphur in the latter compound are mainly sp^3 -hybridized, and one thus might expect the C-S single bond length to be somewhat smaller in the thiuret ion than in 1,2-dithiolane-4-carboxylic acid, the observed difference in C-S bond lengths in the two compounds, 0.07 Å, is hardly due to the greater s-character of the bonding orbital on the carbon atoms in the thiuret ion only. According to the bond-length/bond-order relationship for a C-S bond, proposed by Abrahams, 19 a C-S bond of 1.76 Å corresponds to a π -bond order of about 0.4. The length of the sulphur-sulphur bond in thiuret hydrochloride hemihydrate is found to be 2.071 ± 0.004 Å. This value includes correction for rigid-body libration; the uncorrected value is 2.063 Å. In thiuret hydrobromide ⁸ and hydroiodide, ² where corrections for rigid-body libration were not undertaken, the sulphur-sulphur bond lengths are 2.081 ± 0.009 and 2.088 ± 0.012 Å, respectively. A least squares refinement of the thiuret hydroiodide structure ⁷ gave for the sulphur-sulphur bond a length of 2.083 ± 0.015 Å. There is thus no significant difference between the sulphur-sulphur bond lengths as found in the three thiuret hydrohalides, but the observed differences may be real, as discussed below. Although the sulphur-sulphur bond length in thiuret hydrochloride hemihydrate, 2.071 ± 0.004 Å, has been found smaller than the accepted value 2.08 Å for a sulphur-sulphur single bond, it does not differ significantly from this value. This implies that the sulphur-sulphur bond in thiuret hydrochloride hemihydrate might be accepted as a pure single bond, or close to. It seems likely, however, that a query should be put at the well known value 2.08 Å. As regards cyclic disulphides, it seems justified to suggest a somewhat longer single bond length. The value 2.10 Å, is from a consideration of available experimental data, by one of the authors proposed as a more relevant bond length for a single bond between the two divalent sulphur atoms of a cis planar disulphide group. Since this value, 2.10 Å, emerges from data uncorrected for rigid-body libration, it seems justified to compare the uncorrected sulphur-sulphur bond length, 2.063 Å, in thiuret hydrochloride hemihydrate with it when judging about the double bond character of this bond. It therefore seems likely that the conjugation in the thiuret ion also extends over the sulphur-sulphur bond. The environment of the disulphide group. The environment of the disulphide group in the crystals of thiuret hydrochloride hemihydrate is shown in Fig. 5, and the corresponding interatomic distances and angles are listed in Table 11. The values are based on the coordinates in Table 1. The sum of van der Waals radii for chlorine and sulphur is 3.65 Å, according to the values given by Pauling, 21 and thus Fig. 5 shows that the sulphur atoms of the disulphide group form three close contacts with two neighbouring chloride ions. In thiuret hydroiodide and hydrobromide there are, as mentioned in the introduction, close contacts between halogen and sulphur in a linear X ··S—S···X arrangement. A similar arrangement, with chlorine-sulphur distances 3.864 and 3.527 \pm 0.004 Å, occurs in crystals of thiuret
hydrochloride hemihydrate. One of the latter distances is slightly shorter than the corresponding van der Waals contact and may indicate a weak bond. However, this partial bonding of σ -bond order about 0.10, is probably too weak to affect the sulphur-sulphur bond length. In thiuret hydrobromide and hydro- Fig. 5. Atomic distances and angles with reference to the environment of the disulphide group. Table 11. Atomic distances and angles with reference to the environment of the disulphide group, together with the respective standard deviations in atomic distances and angles. | | Distance (Å) | σ (Å) | |---|--------------|------------| | S_1 Cl_T | 3.527 | 0.004 | | \mathbf{S}_{1}^{1} \mathbf{Cl}_{11}^{1} | 3.315 | 0.004 | | $S_2 \cdots Cl_{TT}$ | 3.272 | 0.004 | | $S_2 \cdots Cl_{III}$ | 3.864 | 0.004 | | $N_1 \cdots Cl_r$ | 3.114 | 0.007 | | N_3 Cl_{III} | 3.132 | 0.007 | | | Angle (°) | σ (°) | | $Cl_1 \cdots N_1 - C_1$ | 110.6 | 0.5 | | $Cl_1S_1-C_1$ | 84.2 | 0.3 | | $Cl_1 \cdots S_1 - S_2$ | 174.2 | 0.2 | | $Cl_1 \cdots S_1 \cdots Cl_{II}$ | 112.1 | 0.2 | | $S_1 \cdots Cl_1 \cdots N_1$ | 56.1 | 0.3 | | $Cl_1 \cdots S_1 - S_2$ | 70.6 | 0.3 | | $Cl_{II}S_2-S_1$ | 72.9 | 0.3 | | Cl _{II} S ₂ Cl _{III} | 114.6 | 0.2 | | $S_1 \cdots Cl_{11} \cdots S_2$ | 36.5 | 0.2 | | $Cl_{11}\tilde{S}_{2}-\tilde{S}_{1}$ | 172.5 | 0.2 | | $Cl_{III}S_2-C_2$ | 79.2 | 0.3 | | $Cl_{111}^{}N_s-C_s$ | 119.4 | 0.5 | | S_2 Cl_{III} N_3 | 42.7 | 0.3 | 'odide the partial sulphur-halogen bonding in the linear X...S.—S...X arrangement, equally strong on either side of the disulphide group, corresponds to a σ -bond order of about 0.23. The sulphur-sulphur bonds in the latter compounds are found to be 0.02 Å longer than in thiuret hydrochloride hemi-hydrate. The difference in bond length, although not significant, seems to indicate that the partial bonding between halogen and sulphur in crystals of thiuret hydroiodide and hydrobromide have caused a small lengthening of the sulphur-sulphur bond in those compounds. Beside the sulphur-chlorine close contact discussed above, the sulphur atoms of the disulphide group in crystals of thiuret hydrochloride hemihydrate form two close contacts with a second chloride ion. This chloride ion lies close to the normal to the sulphur-sulphur bond through its midpoint, 0.22 Å from the plane of the thiuret ion; the sulphur-chlorine distances are 3.315 and 3.272 ± 0.004 Å. A similar arrangement occurs in crystals of thiuret hydrobromide and also in crystals of 3-phenyl-1,2-dithiolium iodide. These halogen-sulphur-sulphur configurations are probably established through overlap of one filled orbital on the halogen ion with two orbitals of the sulphur atoms, one from each. Because both sulphur atoms form weak bonds with halogen, one may assume that charge is partially transferred from the halogen ion to the sulphur atoms, e.g. to those p-orbitals on the sulphur atoms already engaged in the sulphur-carbon σ -bonds, with weak three-center two-electron bonds as result. The b-axis projection of the crystal structure of thiuret hydrochloride is shown in Fig. 6. The thiuret ions are arranged in pairs over centers of symmetry through $N-H\cdots N$ hydrogen bonds of length 3.000 ± 0.010 Å. The Table 12. Observed and calculated h0l, h1l, h2l, h3l, and hk0 structure factors for thiuret hydrochloride hemihydrate. The values given are 25 times the absolute values. | h | k | 1 | | ъ | h | k | 1 | Fo | Pc | h | k | 1 | Po | F _c | h i | k 1 F _o F _c | | |----------------|-----|-------------------|------------------------|-------------------------|----------------|----|---------------|----------------------|------------------------|--------------|--------|-------------------|----------------------|-------------------------|--------------|---|--| | 0 | 0 | 2 | F ₀
2389 | F _C
2639 | 6 | o | 8 | ^o
635 | 715 | 11 | 1 | 0 | 1045 | 1051 | 5 | 1 + 2 1258 +1192 | | | 0 | 0 | 4 | 772
1727 | - 745
1809 | 8 | 0 | 8 | 945
616 | - 935
559 | 13
15 | 1 | 0 | < 184
1189 | 92
1126 | 5 | 1 - 4 2006 -1917 | | | 0 | 0 | 8 | 898 | 1541
859 | 12 | 0 | 8 | 401
490 | - 374
439 | 17
19 | 1 | 0 | 974
< 180 | - 916
118 | 5 | 1 - 5 4191 4090
1 - 6 1622 -1522
1 - 7 854 759 | | | 0 | 0 | 12 | 846
590 | - 872
- 641 | 2 | 0 | - 8 | ◄ 192 | 200 | 21 | 1 | 0 | < 190 | 172 | 5 | 1 - 8 641 599 | | | U | 0 | 16 | 652 | 631 | 6 | 0 | - 8
- 8 | 3208
2319 | 2884
2168 | | 1 | 2 | 999 | 1174
- 983
2977 | 5 | 1 -9 1057 936
1 -10 < 211 - 65
1 -11 405 307 | | | 2 | 0 | 0 | 947
1818 | -1082
-2019 | 8
10
12 | 0 | - 8
- 8 | 3779
< 207
532 | -3677
158
513 | į | 1 | 3
4
5 | 2894
772
530 | 809
- 494 | 5 | 1 -12 625 - 536
1 -13 722 688 | | | 6
8 | 0 | 0 | 2143
877 | -2123
- 719 | 14 | 0 | - 8
- 8 | 1758
525 | 1640
517 | | 1 | 6 | 352
718 | - 315
698 | 5 | 1 -14 530 - 545
1 -15 1173 1100 | | | 12 | 0 | 000 | 4387
1047
794 | 4631
- 977
- 803 | 16
18
20 | 0 | - 8
- 8 | 2246
< 240 | -2135 | i | i | 7
8
9 | 751
2315 | - 680
2371 | 5 | 1 -16 < 184 46 | | | 16 | 0 | 0 | 1187 | -1165
36Z | 22
24 | 0 | - 8 | < 209
1119 | 136
97
1234 | į | i | 10
11 | 1148 | -1154
- 659 | 7 | 1 2010 -2076 | | | 18
20
22 | 0 | 0 | 1034 | 1033 | 2 | 0 | 10 | 300 | - 236 | į | i | 12 | < 234
< 223 | - 97
84 | 7 | 1 Z 1204 -1173
1 3 4035 -4382 | | | 2 | 0 | ż | 3411 | -3599 | 4 | 0 | 10 | 352
631 | - 322
- 634 | | i | 14 | < 201
490 | - 43
568 | 7 | 1 4 873 849
1 5 542 540 | | | 4 | 0 | 2 | 401
656 | 471
- 688 | 10 | 0 | 10 | 507
616 | 525
596 | 1 | 1 | 16 | < 116 | - 50 | 7 7 | 1 6 < 215 135
1 7 467 - 455 | | | 8
10 | 0 | 2
2
2 | 904
294 | 902 | 12 | 0 | 10 | 379 | - 340 | 1 | i | - 1
- 2 | 2807
1278 | 2920*
-1305 | 7
7
7 | 1 8 < 234 - 142
1 9 989 - 985
1 10 319 - 232 | | | 12 | 0 | z | 310
395 | 319
372 | 2 | 0 | -10 | < 228
1206 | -1120 | 1 | - - | - 3
- 4
- 5 | 1034
879 | - 993
951 | 7
7
7. | 1 10 319 - 232
1 11 412 - 312
1 12 436 381 | | | 16 | 0 | 2
2
2 | 1479
327 | -1485
- 350
- 333 | 6
8
10 | 0 | -10 | 724
929 | 650
- 943
-1334 | 1 | 1 | - 6 | 2856
153 | -2782
50
-2081 | 7 | 1 13 145 - 221 | | | 20 | 0 | | 341 | - 333
1795 | 12 | 00 | -10
-10 | 1336
< 240
759 | 47
- 745 | - | į | - 7
- 8 | 2037
1287
1171 | 1362 | 7 | 1 - 1 980 1054 | | | 2
4
6 | 0 - | - z | 2058
3018
2679 | -2804
-2682 | 16 | 0 | -10 | 1857
285 | 1789 | į | i | -10 | 683 | 655
-1802 | 7
7
7 | 1 - 3 2164 -2128 | | | 8 | 0 - | - Z | 5297
956 | -5357°
869 | 20
22 | 0 | -10 | | -1139
- 164 | į | 1 | -12
-13 | 374
< 232 | 36Z
- 165 | 7 | 1 - 5 358 - 335 | | | 12 | ۰ - | - 2
- 2
- 2 | 3030
362 | 2833
- 311 | 24 | 0 | -10 | 215 | 231 | 1 | i | -14
-15 | < 217
372 | - 56
- 352 | 7
7
7 | 1 - 7 507 - 467
1 - 8 2015 -1905 | | | 16. | 0 + | 2 | 1117
947 | -110i
- 947 | 2 | 0 | 12 | 455
941 | - 435
- 925 | 1 | 1 | -16 | < 151 | 37 | 7 | 1 - 9 751 656
1 -10 707 - 636
1 -11 1539 1500 | | | 20
22 | 0 - | - Z | 453
1094 | 468
1153 | 6
8 | 0 | 12 | 1256
958 | 919 | 3 | ! | 2 | 391
1406 | 390
-1477 | 7
7
7 | - | | | 2 | 0 | 4 | 4664 | 4732* | 10
2 | 0 | 12
-12 | 443
1316 | - 450
1320 | 3 | i | 3
4
5 | 2499
1187
956 | 2725
1150
907 | 7 7 | 1 -14 < 230 - 112
1 -15 581 616 | | | 6 | 0 | 4 | 2405
2042
1113 | -2380
-2060
1213 | 4 | 0 | -12. | 1224 | 1327 | 3 | i | 6 7 | 296
1406 | - 320
1349 | 7 | 1 -16 < 192 21 | | | 10 | 0 | 4 | 697 | 689
3455 | 8 | 0 | -12
-12 | 430 | - 38Z
-127Z | 3 | į | 8
9 | 741
838 | ~ 707
- 848 | 9 | 1 1 2828 -2860 | | | 14 | 0 | 4 | 1438 | -1486
-1108 | 12 | 0 | -12
-12 | 2056
459 | 2089
436 | 3 | İ | 10 | 395
565 | - 408
- 584 | 9
9 | 1 2 246 237
1 3 763 725 | | | 18 | ŏ | 4 | < 190 | 175 | 16
18 | 0 | -12 | 285
550 | - 255
581 | 3 | 1 | 12 | < 227
685 | 216
673 | 9 | 4 < 256 67
5 292 316 | | | 2 | 0 . | - 4
- 4 | 1026
4360 | 984
-3996 | 20
22 | 0 | -12
-12 | 941
680 | - 998
748 | 3 | 1 | 15 | < 178
546 | - 639 | 9
9 | 1 6 641 670
1 7 1586 -1673
1 8 1384 1483 | | | 8 | 0 - | - 4 | 958
2372 | 919
2277 | 2 | 0 | 14 | 408 | - 329
- 185 | .3
3 | ı | - 1
- 2 | 333 | 288
·2548 | 9 | 1 9 449 473 | | | 10 | ō. | - 4 | 1334
2364 | -1349
2369 | 6 | 0 | 14 | 223
540 | 545 | 3
3. | i
L | - 2
- 3
- 4 | 2739
6836
5353 | 7353
5594 | ģ | 1 11 407 404 | | | 14
16
18 | 0 - | - 4
- 4 | 277
546
438 | 270
519
416 | 2 | 0 | -14
-14 | 9 93
1764 | - 923
1615 | 3.
3
3 | i | - 5 | < 132
972 | - 10
915 | 9 | 1 - 1 1475 -1391 | | | 20
22 | ο. | - 4
- 4 | 1688 | -1579
581 | 6 | 0 | -14 | 401
511 | 353
- 476 | 3 | į | - 7
- 8 | 527
203 | - 559
- 213 | 9 | 1 - 2 250 100 | | | 24 | | - 4 | 391 | 463 | 10 | 0 | -14 | 1198
443 | -! 184
- 427 | 3 | İ | - 9
-10 | 1566
213 | 1565
138 | 9 | 1 - 4 252 - 238
1 - 5 840 - 783 | | | 2 | 0 | 6 | 1063
4788 | -1118
-4838 | 14 | 0 | - (4.
- 14 | 1862 | 1714 | 3 | 1 | -11
-12 | < 376
1187 | - 68
1188 | 9 | 1 - 6 474 - 427
1 - 7 < 182 - 54
1 - 8 1020 943 | | | 6
8 | 0 | 6 | 217
550 | 280
600 | 18
20 | 0 | -14
-14 | 256
1305 | - 205
-1345 | 3 | ŀ | -13
-14 | < 234
542 | - 122
- 563 | 9
9
9 | -8 1020 943
 -9 2532 -2410
 -10 < 215 -59 | | | 12 | 0 | 6 | 575
364 | 561
363 | 2 | 0 | -16 | < !82 | -
61
259 | 3 | 1. | -16 | < 172 | - 572
- 74 | 9 | 1 -11 869 816 | | | 16 | 0 | 6 | 1328
420 | -1336
448 | 4
6
8 | 0 | -16
-16 | 242
794
782 | 720 | 3
5 | 1 | -17 | 263
4174 | - 270
4560 | 9 | 1 -13 852 898
1 -14 242 - 223 | | | 2 | | - 6
- 6 | 1938
629 | 1909 | 10
12 | 0 | -16
-16 | 740 | 691
- 724 | 5 | į | 2 | 1766
331 | -1858
236 | 9 | 1 -15 621 - 644 | | | 6
8 | ō | - 6
- 6 | 2828
846 | -272Z
- 797 | 14 | 0 | -16
-16 | < 197
565 | 137
592 | 5 | i | 4 | 794
1098 | - 851
-1234 | 9 | 1 -17 < 163 167 | | | 10 | .0 | - 6 | 2000 | 1858
1146 | 18 | 0 | -16 | < 182 | - 25 | 5 | i | 6
7 | 240
476 | - 258
- 472 | 11 | 1 1 321 360
1 2 < 211 - 143 | | | 14 | 0 | - 6
- 6 | 470
1649 | - 445
-1595 | 10 | 0 | -18
-18 | 747
240 | - 984
- 321 | 5 | ļ | 8 | 476
720 | 509
- 721 | !! | 1 3 776 749
1 4 < 228 - 205
1 5 691 - 617 | | | 18
20 | ō | - 6
- 6 | < 252
< 242 | - 43 | 12 | 0 | -18 | 256 | 313
- 459 | 5 | | 10 | 451
240 | - 416
216
- 678 | 11 | 1 6 < 236 - 150
1 7 1071 1110 | | | 22
24 | 0 | - 6 | 490
378 | - 528
377 | 1
3
5 | 1 | 0 | 41,2
263
999 | - 459
- 321
1089 | 5
5 | | 12
13 | 649
616
< 143 | - 678
- 625
- 151 | 11 | 8 < 221 - 154
1 9 1082 1084 | | | 2 | 0 | 8
B | 1524
711 | | 7 9 | i | Ö | 879
1293 | - 987
1334 | 5 | | - 1 | 2697 | | ii
ii | 1 10 < 172 - 117 | | | h | k 1 | Fo | Fc | h | k | 1 | Fo | F_c | h | k | 1 | Fo | Fc | h | ĸ | 1 | Fo | Fc | |----------|-------|----------------|---------------------------------|----------|---------------|------------|----------------|----------------------------------|----------|-------------|------------|---------------|----------------|----------|--------|------------------|----------------|----------------| | 11 | 1 - 1 | 546 | 462 | . 12 | | -16 | < 153 | 6 | 2 | 2 | - 2 | 4433 | -4594 | 8 | 2 | - 4- | 757 | - 683 | | 11 | 1 - 2 | < 18Z | 50 | | | | | | 2 | 2 | - 3 | 1347 | 1311 | 8 | 2 | - 4 ⁻ | 1212 | -1180 | | 11 | 1 - 3 | 314
350 | 238 | 19 | - ! | 1 | 1065 | -1103 | 2 | 2 | - 4
- 5 | 314
972 | - 282
- 943 | 9 | 2
2 | - 6
- 7 | < 89 | - 71 | | ii | 1 - 5 | 2590 | - 282
-2643 | 19
19 | | 2 | 368
261 | 323
316 | 2 | z | - 6 | 1593 | -1611 | 8 | 2 | - 8 | 1274 | -1266
2172 | | 11 | 1 - 6 | 900 | - 789 | 19 | i | 4 | < 137 | - 22 | 2 | 2 | - 7 | < 89 | - 74 | 8 | 2 | - 9 | < 108 | 8 | | !! | 1 - 7 | 953
676 | 79 7
555 | 19 | | - 1 | 850 | 829 | 2 | 2 | - 8
- 9 | < 101
1014 | 1001 | 8
8 | 2 | -10 | 203
590 | - 247
660 | | ii | 1 - 9 | 488 | - 465 | 19 | - i | - 2 | 881 | - 829
- 865 | ž | 2 | -10 | 1092 | ~1208 | 8 | 2 | -12 | 486 | 514 | | 11 | 1 -10 | 407 | 352 | 19 | i | - 3 | 319 | - 270 | 2 | 2 | -11 | 306 | 290 | 8 | 2 | -13 | < 120 | 62 | | 11 | 1 -11 | 2128
< 236 | -2260
- 53 | 19
19 | - 1 | - 4
- 5 | 554
505 | - 270
- 597
- 566
- 191 | 2
2 | 2 | -12
-13 | 1601
786 | -1648
- 733 | 8 | 2
2 | -14
-15 | < 114
< 105 | 47
107 | | ii | 1 -13 | < 236 | - 145 | 19 | i | - 6 | < 232 | - 191 | 2 | 2 2 | -14 | 310 | 308 | 8 | 2 | -16 | 157 | - 148 | | 11 | 1 -14 | 410 | - 359
- 130
- 45
- 193 | 19 | 1 | - 6
- 7 | < 232 | 242 | 2 | 2 | -15 | 213
< 72 | - 208 | 8 | 2 | -17 | 287 | 290 | | - 11 | 1 -15 | < 215
< 192 | - 130
- 45 | 19 | 1 | - 8
- 9 | < 230
954 | 229
- 965 | 2 | 2 | -16 | < 72 | 60 | 10 | 2 | | 455 | 446 | | 11 | 1 -17 | 197 | - 193 | 19 | i | -10 | < 223 | - 249 | 4 | 2 | 1 | 240 | i 94 | 10 | 2 | 2 | 532 | 525 | | 13 | 1 1 | 761 | 716 | 19 | - ! | ~11
-12 | < 217
< 207 | 224 | 4 | 2 | 2 | 1202 | -1164
415 | 10 | 2 | 3 | 209
538 | 195
536 | | i s | i ż | 397 | - 379 | 19 | - i | -12 | 1005 | - 126
1085 | 4 | 2 | 4 | 573 | 541 | 10 | ž | 5 | 207 | - 536
- 200 | | 13 | 1 3 | 753 | 739 | 19 | 1 | -14 | < 176 | 114 | 4 | 2 | 5 | 507 | - 443 | 10 | 2 | 6 | 1092 | -1090 | | 13 | 1 4 | < 236
809 | - 195
836 | 19 | 1 | -15 | 325 | - 297 | 4 | 2 | 6
7 | 1824
1376 | 1873
-1334 | 61
01 | 2
2 | 7
8 | 196
348 | - 188
- 344 | | 13 | 1 6 | 529 | - 505 | 21 | 1 | | < 147 | 152 | 4 | 2 | 8 | 459 | - 448 | 10 | 2 | 9 | 778 | 699 | | 13 | 1 7 | 999 | 922 | 21 | 1 | 2 | < 118 | 26 | 4 | 2 | 9 | 159
< 159 | - 177 | 10 | 2 | 10 | 486 | - 466 | | 13 | 1 8 | 265
443 | - 236
- 447 | 21 | | - 1 | 405 | - 397 | 4 | 2
2
2 | 11 | < 116 | 159
29 | 10 | z | 11 | 5C9 | 493 | | 13 | 1 10 | < 108 | - 92 | 21 | i | - 2 | 319 | 294 | 4 | 2 | 12 | 658 | 575 | 10 | Z | - 1 | 1921 | -1983
- 516 | | 13 | 1 - 1 | 335 | - 307 | 21 | 1 | - 3 | 227 | - 187 | 4 | z | 13 | 112 | - 145
- 90 | 10 | 2 | - 2
- 3 | 592 | - 516
-2267 | | 13 | | < 207 | 117 | 21 | - [| - 4
- 5 | 596
1144 | 624
-1165 | | | | | ,- | ŧü | 2 | - 4 | 2275
1847 | 1739 | | 13 | 1 - 3 | 2486 | 2558 | 21 | į | - 6 | 257 | 293 | 4 | 2 | - 1
- 2 | 95
1042 | 102 | 10 | 2 | - 5 | 546 | - 498 | | 13 | 1 - 4 | 1355 | 1336 | 21 | 1 | - 7
- 8 | < 209
< 207 | - 23
97 | 4 | 2 | - 2
- 3 | 1696 | -1010
1541 | 10 | 2 | - 6
- 7 | 1115 | -1040
- 158 | | 13 | i - 6 | 1009 | 955 | 21 | 1 | - 9 | 261 | 269 | 4 | 2 | - 4 | 242 | - 181 | 10 | 2 | - 8 | 430 | 412 | | 13 | 1 - 7 | 1853
575 | -1848
572 | 21
21 | I | - I C | < 197 | - 17 | 4 | 2 | - 5 | 1516
1692 | 1439
-1607 | 10 | 2 | - 9
-10 | 1407 | -1502
- 216 | | 13 | 1 - 9 | 933 | 860 | 21 | 1 | -11 | ;24!
< 176 | -1286
30 | 4 | 2 | - 6
- 7 | 530 | 480 | 10 | 2 2 2 | -11 | 1111 | -1270 | | 13 | 1 -10 | 281 | 223 | 21 | - 1 | -13 | 163 | - 208 | 4 | Z | - 8 | 1334 | -1189 | 10 | 2 | -12 | 168 | 172 | | 13 | 1 -11 | 310
441 | - 203
425 | 21 | - 1 | -14 | < 141 | - 21 | 4 | 2 | - 9
-10 | 352
1212 | - 311 | 10 | 2 | -13
-14 | 23Z
683 | - 273
699 | | 13 | 1 -13 | 788 | - 817 | 23 | | - 2 | < 130 | - 40 | 4 | Z | -11 | 772 | 748 | 10 | 2 | -15 | 105 | 164 | | 13 | 1 -14 | < 225 | 4 | 23 | t | - 3 | 432 | 458 | 4 | 2 | -12 | 323
391 | - 346
377 | 10 | 2 | -16 | 89 | - 120 | | 13 | 1 -15 | 666
< 186 | - 655
- 83 | 23
23 | 1 | - 4
- 5 | 358
244 | 369
174 | 4 | 2 | -13
-14 | 962 | - 876 | 10 | 2 | -17 | 300 | - 301 | | 13 | 1 -17 | 621 | - 662 | 23 | 1 | - 6 | 354 | 358 | 4 | 2 | -15 | 136 | - 131 | 12 | 2 | 1 | 281 | 283 | | 15 | 1 1 | 1911 | 1963 | 23
23 | -! | - 7
- 8 | 1049
< 166 | -1122
50 | 4 | 2 | -16 | 269 | 266 | 12 | 2 | 2 | 288 | 326
- 26 | | 15 | 1 2 | 540 | 511 | 23 | i | - 9 | < 163 | 53 | . 6 | z | 1 | 635
794 | 626 | 12 | 2 | 4 | 459 | - 462 | | 15 | 1 3 | < 232 | - 134
- 162 | 23
23 | 1 | -10 | < 155
< 145 | - 62 | 6 | 2 | 2 | 794
1175 | 771
-1196 | 12 | 2
2 | 5 | 800
840 | 753
850 | | 15 | 1 4 | < 227
< 213 | - 67 | 23 | | -11 | < 145 | - / | 6 | 2 | 4 | 1913 | 1938 | 12 | ž | 6 | 534 | 528 | | 15 | 1 6 | 453
< 170 | - 430 | 0 | 2 | 1 | 1615 | 1557 | 6 | z | 5 | 1344 | -1429 | 12 | Z | 8 | 190 | 178 | | 15 | 1 7 | < 134 | - 172
117 | 0 | 2 | 2 | 1239
879 | 1304 | 6 | 2 | 6 | 221 | -1078
- 232 | 12 | 2 | 9 | 215 | 225 | | | | | | ō | 2 | 4 | 122 | 81 | 6 | 2 | 8 | 215 | ~ 228 | 12 | 2 | - 1 | 1129 | 1148 | | 15 | 1 - 1 | < 227 | - 116 | o
o | 2 | 5 | 2143 | 103
-2094 | 6 | z | 10 | 1200 | - 175 | 12 | 2 | - 2
- 3 | 2370 | -2410
273 | | 15 | 1 - 3 | 397 | - 314 | ິ້ນ | 2 | 6
7 | 265 | 245 | 6 | 2 | 1.1 | 1007 | - 869 | iz | z | - 4 | 234
271 | 280 | | 15 | 1 - 4 | 865 | - 824 | J | 2 | 8 | 794 | 743 | 6 | 2 | 12 | 95
530 | - 108 | 12 | 2 | - 5 | 1144 | -1139 | | 15 | 1 - 6 | 2317
< 225 | 2411 | 0 | 2 | 9 | 1165
240 | 1386
- !86 | 6 | 2 | 13 | 530 | - 469 | 12 | 2 | - 6
- 7 | 397
381 | - 369
- 339 | | 15 | 1 - 7 | 672 | 649 | 0 | 2 | - 11 | 978 | 1040 | 6 | 2 | - 1 | 215 | 207 | 12 | 2 | - 8
- 9 | 569 | - 554 | | 15 | 1 - 8 | 1206
< 232 | 1197
97 | o
o | 2 | 12 | 484 | 471 | 6 | Z | - ż | 540
499 | - 530
- 458 | 12 | 2 | - 9
-10 | 227
< 157 | - 233
- 77 | | 15 | 01-1 | 263 | 273 | ō | 2 | 14 | < 112
194 | - 83
186 | 6 | 2 | - 4 | 873 | 771 | 12
12 | 2 | -11 | < 120 | 99 | | 15
15 | 1 -11 | 472
< 234 | 429
- 81 | ٥ | 2 | 15 | 122 | - 129 | 6 | z | - 5
- 6 | 182
4170 | - 68
4232 | 12 | 2 | -12
-13 | 64 I
75 I | - 665 | | 15 | 1 -13 | < 227 | 83 | 2 | 2 | 0 | 130 | - 49 | 6 | 2 | - 7 | 2240 | 2235 | 12 | z | -14 | 751
594 | - 748
586 | | 15 | 1 -14 | < 215
755 | 52
814 | 4 | 2 | 0 | 2631 | 2886 | 6 | 2 | - 8 | 606 | 554
1150 | 12 | 2 | -15 | 186 | - 163 | | 15 | 1 -16 | 755
498 | 814
463 | 6
8 | 2 | 0 | 2046
486 | 2077
- 484 | 6 | Z | -10 | 862 | - 854 | 12 | 2 | -16
-17 | 459
110 | 435
127 | | 15 | 1 -17 | 352 | - 368 | 10 | 2 | 0 | 1903 | -1983 | 6 | 2 | -11 | 228 | 186 | | | | | | | 17 | | 817 | - 601 | 12 | 2 | 0 | 294 | 254 | 6 | 2 | -12
-13 | 813
147 | 823
184 | 14 | 2 | 1 2 | 465 | 453 | | 17 | 1 2 | 310 | - 8CI
- 318 | 14
16 | 2 | 0 | 538
< 145 | 479
~ 17 | 6 | 2 | -14 | 114 | - 116 | 14 | 2 | 3 | 1355 | -1441
1090 | | 17 | | 1156 | -1122 | 18 | 2 | 0 | 420 | 351 | 6 | 2 | -15 | 544 | 484 | 14 | 2 | 4 | 478 | 445 | | 17 | 1 4 | 28,t
318 | 200
316 | 20 | 2 | 0 | 449 | ~ 415 | 6 | 2 | -16
-17 | 130
223 | 161
269 | 14 | 2
2 | 5 | 205
819 | 198
784 | | 17 | i 6 | < 141 | - 63 | 2 | 2 | 1 | 1100 | 1164 | | | | | | 14 | z | 6
7 | 279 | - 261 | | 17 | 1 - 1 | 1243 | 1304 | 2 | 2 | 2 | 1946 | 2016
- 359 | 8
8 | 2 | 1 2 | 610
860 | - 619
- 843 | 14 | 2 | 8 | 166 | - 168 | | 17 | 1 - 2 | 652 | - 662 | 2 2 | 2 | 4 | 1708 | - 1694 | 8 | Z | 3 | 786 | - 808 | 14 | z | - 1 | 184 | - 189 | | 17 | 1 - 3 | 426 | - 369 | 2 | 2 | 5 | 2195 | 2240 | 8 | 2 | 4 | 368 | 320 | 14 | 2 | - 2
- 3 | < 116 | - 50 |
| 17 | 1 - 4 | < 236
< 236 | 70
- 163 | 2 2 | 2 2 2 2 2 2 2 | 6
7 | 534
1839 | - 491
1844 | 8 | -2 | 6 | 159
966 | - 939 | 14 | 2 | - 4 | 1140 | 1194 | | 17 | 1 - 6 | 680 | - 656 | 2 2 | 2 | 8 | 1651 | 1594 | ě | 2 | 7 | 159 | - 181 | 14 | 2 | - 5 | 1471 | - 527
1573 | | 17 | 1 - 7 | 865
908 | 868
- 938 | 2 2 | 2 | 10 | 465
< 120 | 472
137 | 8 | 2 2 2 2 | 8 | < 120
492 | - 504 | 14 | 2 | - 6
- 7 | 976 | -1038
939 | | 17 | 1 - 9 | 730 | 720 | 2 | ž | 11 | 364 | - 328 | 8 | 2 | 10 | 960 | -1032 | 14 | 2 | - 8 | 1657 | -1883 | | 17 | 1 -10 | 863
1322 | - 862
1449 | 2 | 2 | 12 | 652 | 606 | 8
8 | 2 | 11 | 170 | 158 | 14 | 2 | - 9
-10 | 30Z | - 314
135 | | 17 | 1 -12 | < 225 | - 130 | 2 | 2 | 13 | 244
197 | - 197
- 197 | | | 12 | 693 | - 617 | 14 | 2 | -11 | 238 | 255 | | 17 | 1 -13 | 234 | - 248 | 2 | z | 15 | 451 | 445 | 8 | 2 | - 1 | 432 | - 359 | 14 | 2 | -12 | < 118 | ÷ 50 | | 17 | 1 -14 | < 199
< 180 | - 196
123 | 2 | 2 | - 1 | 24.54 | 2785 | 8 | 2 | - 2
- 3 | 2093
687 | 1988 | 14 | 2 | -!3
-!4 | 316 | 321
-1111 | | | 15 | - 100 | 123 | 2 | 4 | - 1 | 2606 | 2 185 | J | - | - 5 | 907 | 657 | . 4 | 4. | - 1 4 | 11.44 | | | | k | 1 | D | P | h | k | 1 | Fo | F _c | h | k | 1 | Fo | $F_{\mathbf{c}}$ | h | k | 1 | Fo | Fc | |----------------|-------------|-------------------|------------------------------|--------------------------------|---------------|-------------|-------------------|-----------------------|---------------------------------|----------------|-------------|-------------------|--------------------------------|-------------------------|-------------------|-------------|--------------------------|-------------------------------|-------------------------| | n
14
14 | 2 2 | -15
-16 | F ₀
186
159 | F _C
- 213
228 | ! | 3 | 8 | 290
1316 | - 271
-1394 | 7 7 | 3 | - 3
- 4 | 1386 | 1309
607 | 15
15 | 3 | 3 | 256
939 | 222
838 | | 14 | 2 | -17 | 165 | - 341 | į | 3 | 10. | 769
385 | 834
420 | 7 | 3 | - 5
- 6 | 927
1152 | - 873
-1041 | 15 | 3 | 5 | 219
310 | - 152
263 | | 16
16
16 | 2
2
2 | 1
2
3 | 478
232
347 | 470
164
- 369 | 1 | 3
3
3 | 12 | 370
< 201
< 141 | 306
8
- 26 | 7
7
7 | 3
3 | - 7
- 8
- 9 | 312
1105
523 | - 343
-1146
- 511 | 15 | 3 | - I | < 215
< 217 | 121 | | 16 | 2 | 4
5 | 954
499 | 917
- 462 | ! | | - 1 | 1295 | -1524* | 7 | 3 | -10
-11
-12 | < 213
709 | - 23
- 717 | 15
15
15 | 3 | - 3
- 4
- 5 | 517
821
1218 | 461
817
-1282 | | 16 | 2 | 6
- 1 | 397
120 | - 354
159 | ' | 3 | - 3
- 4 | < 110
730 | -3402 *
- 66
- 672 | 7
7
7 | 3 | -12
-13
-14 | < 215
312
674 | - 52
310
655 | 15
15 | 3. | - 6
- 7 | < 217
< 217 | - 20
124 | | 16 | 2 | - 2
- 3 | 209
< 120 | 222 | ! | 3 | - 5
- 6
- 7 | 1030
329
993 | 991
303
-1065 | 7 | 3 | -15
-16 | 283
323 | - 264
299 | 15
15
15 | 3 | 8
- ,9
-10 | 536
< 213
385 | - 564
- 202
- 370 | | 16
16 | 2 2 2 | - 4
- 5
- 6 | 159
< 120
1268 | - 150
- 22
1385 | i
t. | 3 | - 8
- 9 | 925
< 209 | - 956
41 | 9 | 3 | 1
2 | 1318 | 1279 | - 15
15 | 3 | -11
-12 | < 203
< 194 | - 147
- 66 | | 16
16
16 | 2 2 2 | - 7
- 8
- 9 | 879
209
656 | 928
215
730 | į | 3 | -10
-11
-12 | 811
407
< 205 | - 893
447
172 | 9 | 3 | 3
4
5 | 432
238
< 217 | - 403
- 166
- 155 | 15
15 | 3 | -13
-14
-15 | 459
345
< 134 | 425
- 360
34 | | 16 | 2 | -10
-11 | 953
< 116 | -1020
8 | ļ | 3 | -13
-14 | 292
358 | - 339
354 | 9 | 3 | 6 | < 215
567 | 151
587
- 372 | 17 | 3 | , | 254
370 | 212 | | 16
16 | 2
2
2 | -12
-13
-14 | 654
< 108
172 | 735
72
- 211 | 3 | 3 | 1 2 | < 110
658 | 59
- 683 | 9
9
9 | 3 | 8
9
10 | 376
596
381 | - 372
- 515
- 402 | ! 7
! 7
! 7 | 3
3 | 2
3
4 | 257
< 128 | 190 | | 16 | 2 | -15
-16 | 316
393 | 350
- 430 | 3
3
3 | 3
3
3 | 3
4
5 | 1069
337
722 | -1105
354
753 | . 9 | 3 | - 1
- 2 | 691
947 | - 601
949 | 17
17 | 3 | - 1
- 2 | 819
< 205 | - 761
59 | | 18
18 | 2 | 1 2 | 610
99 | - 599
108 | 3 | 3 | 6
7 | 1328
561 | 1407
- 567 | 9 | 3 | - 3
- 4 | 714
470 | 693
410 | 17
17 | 3 | - 3
- 4 | 455
< 209 | 400
79 | | 18 | 2
2 | 3
4 | 457
76 | - 425
- 89 | 3
3
3 | 3 3 3 | 8
9
10 | 1318
265
310 | 14.16
260
- 215 | 9
9 | 3 | - 5
- 6
- 7 | 439
738
< 192 | 350
- 711
33 | 17
17
17 | 3 | - 5
- 6
- 7 | 474
856
304 | - 382
837
- 265 | | 18 | 2 | - 1
- 2
- 3 | 370
1764 | ~ 360
1793 | 3
3
3 | 3 | 12 | < 201
< 180
563 | 71
159
- 531 | 9 | 3 | - 8
- 9
-10 | 536
1227 | 477
1188 | 17
17
17 | 3
3
3 | - 8
- 9
-10 | 563
412
350 | 548
372
- 334 | | 18
18
18 | 2
2
2 | - 3
- 4
- 5 | 408
534
118 | 414
504
137 | 3 | 3 | - 1 | 302 | 340 | 9 | 3
3
3 | -11 | 1617
< 217
780 | 1728
- 21
776 | 17
17 | 3 | -11 | 306
527 | - 277
- 476 | | 18
18 | 2 2 2 | - 6
- 7
- 8 | 445
480
1289 | - 494
- 492 | 3
3
3 | 3
3 | - 2
- 3
- 4 | 1493
1502
447 | 1600
-1473
- 380 | 9
9
9 | 3 3 | -13
-14
-15 | < 203
< 188
521 | - 152
- 199
508 | 17 | 3 | -13
-14 | < 159
< 137 | 47
135 | | 18 | 2 | - 9
-10 | ₹116
302 | 11
294 | 3 | 3 | - 5
- 6 | 848
1160 | 769
~1130 | 9 | 3 | -16 | 271 | 266 | 19 | 3 | 1 | 668 | 631
- 84 | | 18
18 | 2
2
2 | -11
-12
-13 | 585
170
147 | 591
184
190 | 3
3
3 | 3
3
3 | - 8
- 9 | 707
< 192
912 | 623
- 142
- 922 |

 | 3 | 1
2
3 | 436
< 213
703 | 386
15
- 695 | 19
19
19 | 3 | - 1
- 2
- 3 | < 168
573
300 | 486
- 261 | | 18 | 2 | -14
-15 | 170
74 | 193 | 3
3
3 | 3
3
3 | -10
-11
-12 | 348
275
540 | - 374
305
- 571 | 11
11 | 3 3 3 | 4
5 | 463
703
1233 | - 473
707
-1349 | 19
19 | 3
3
3 | - 4
- 5
- 6
- 7 | 308
< 190
< 192 | 275
93
16 | | 20 | 2 | 3 | 103 | 108 | 3 | 3 | -13
-14 | 257
538 | - 267
- 572 | 11 | 3 | 6
7
8 | 261
< 168 | - 243
- 106 | 19 | 3 3 | - 8 | 438
443 | - 389
382
176 | | 20
20
20 | 2 2 2 | - 1
- 2
- 3 | 604
438
923 | - 558
- 399
- 881 | 3
5 | .3
3 | -15
I | < 143
842 | 106
- 831 | 11 | 3 | 9 | 383
610 | - 354
535 | 19
19
19 | 3 | - 9
-10
-11
-12 | 248
960
< 163 | 906
- 138 | | 20
20
20 | 2 2 2 | - 4
- 5 | 889
199
325 | 931
- 219
- 372 | 5
5
5 | 3
3
3 | 2
3
4 | 1076
1286
1537 | 1152
1323
1660 | 11 | 3 | - 2
- 3
- 4 | 1849
805
1071 | -1935
789
-1008 | 19 | 3 | -12
-13 | 724
567 | 688
- 525 | | 20
20 | 2 | - 7
- 8 | < 108
106 | - 11
147 | 5 | 3 | 5 | 1055
590 | 626 | 11 | 3 3 | - 5
- 6 | 1493
244 | 1530
193 | 21
21 | 3 | - 2
- 3 | 575
< 137 | - 598
52 | | 20
20
20 | 2 2 2 | - 9
-10
-11 | 62 I
383
288 | - 650
431
- 297 | 5
5
5 | 3
3 | 7
8
9 | 385
< 217
596 | - 359
- 64
613 | !! | 3 3 | - 7
- 8
- 9 | 436
434
< 213 | - 385
- 409
- 134 | 21
21
21 | 3
3 | - 4
- 5
- 6 | < 143
674
474 | 32
629
461 | | 20
20 | 2 | -12 | 134
132 | - 160
148 | 5
5 | 3 | 10 | < 201
< 184 | 27
26
349 | 11 | 3
3 | -10 | 1011 | 858
1019 | 2 t
2 t | 3 | - 7
- 8
- 9 | 294
< 149
< 143 | 265
139
- 115 | | 20
22 | 2 | -14
- 2 | 128
776 | 155
- 756 | 5
5 | 3 | 12 | 364
683 | 631 | | 3
3 | -12
-13
-14 | 362
376
567 | 332.
- 366
523 | 21 | 3 | -10 | 422
467 | - 423
550 | | 22
22
22 | 2
2
2 | - 3
- 4
- 5 | 79
401
730 | 109
- 395
- 759 | 5
5
5 | 3
3
3 | - 2
- 3
- 4 | 923
< 130
1932 | 870
- 55
1803 | 11 | 3 | -15
-16 | < 159
190 | 82
185 | 0 | 2 | 0 | 894
1224 | -1053
1226 | | 22
22 | 2 | - 6
- 7 | 112
571 | - 117
- 510 | 5 | 3 | - 5
- 6
- 7 | 1731
248 | -1447
- 140
589 | 13 | 3 | 2 | 455
571 | - 407
- 566
- 426 | 0 2 | 6 | o
o | 372
205 | 1226
275
180 | | 22
22
22 | 2
2
2 | - 8
- 9
-10 | 337
196
211 | - 343
- 220
282 | 5
5
5 | 3
3
3 | - 8
- 9 | 689
668
802 | - 589
- 816 | 13
13
13 | 3 | 3
4
5 | 470
546
< 19 4 | - 503
134 | .4 | 4 | 0 | 552
327 | - 536
- 277 | | 22
22 | 2
2 | -11
-12 | √ 66 | - 188
- 46 | 5
5
5 | 3 | -10
-11
-12 | 269
< 238
285 | - 229
- 20
269 | 13 | 3 | 6
7 | 563
426 | - 393 | 8
10
12 | 4 | 0 | 347
354
240 | 345
438
~ 268 | | 1
3 | 3 | 0 | 1586
1030 | -1707
1112 | 5 | 3 | -13
-14 | 304
695 | - 63Z | 13
13 | 3 | - I | 496
290 | 465
246 | 14 | 4 | 0 | 453
< 108 | - 419
55 | | 5
7
9 | 3
3 | 0 | 143
1696
381 | 122
1792
- 381 | 5
7 | 3 | -15 | 155
854 | - 180
- 824 | 13
13
13 | 3 3 | - 3
- 4
- 5 | 1057
914
515 | -1034
- 935
- 466 | 18 | 5 | 0 | 412
540 | 365
518 | | 11 | 3 | 0 | 906
< 188 | - 988
121 | 7
7
7 | 3
3 | 2
3
4 | 623
635
606 | 633
590
- 652 | 13
13
13 | 3 | - 6
- 7
- 8 | 1398
878 | -1357
668 | 3
5
7 | 5
5
5 | 0
 546
230
951 | - 534
229
- 905 | | 15
17
19 | 3 | 0 | 474
1107
269 | 356
973
- 223 | 7 | 3 | 5 | 542
263 | - 5!4
- 259 | 13 | 3 | - 9
-10 | 800
240 | - 767
- 181 | 9 | 5
5 | 0 | 302
554 | 268
568 | | 1 | 3 | l
2 | 627
< 103 | 896
16 | 7
7
7 | 3 | 7
8
9 | 325
< 213
486 | 318
69
402 | 13
13
13 | 3 | -11
-12
-13 | 331
862
< 192 | 326
- 798
- 61 | 13
15 | 5 | 0 | < 106
< 79 | 73
83 | | į | 3 | 3 | 1028
275 | -1137
240 | 7 | 3 | 11 | < 182
219 | - 189
- 176 | 13 | 3 | -14
-15 | 633
308 | - 627
- 283 | 2
4
6 | 6
6 | 0 | 294
271
< 110 | - 209
206
- 66 | | | 3
3 | 5
6
7 | < 161
1382
925 | - 43
-1513
- 997 | 7
7 | 3 | - I
- Z | 1512
207 | -1511
149 | 15
15 | 3 | !
2 | 755
1036 | - 674
1049 | 8 | 6 | 0 | 438
335 | - 431
275 | Fig. 6. The arrangement of ions in the unit cell as seen along the b-axis. Broken lines indicate hydrogen bonds. exocyclic nitrogen atoms of a thiuret ion form hydrogen bonds N-H...Cl, 3.114 and 3.132 ± 0.007 Å long, to the chloride ions of the linear Cl···S-S···Cl arrangement. There are two $O-H\cdots Cl$ hydrogen bonds, of length 3.156+0.006Å, and two N-H...O hydrogen bonds, of length 2.870 \pm 0.010 Å. This gives the water oxygen approximately tetrahedral surroundings. # REFERENCES - 1. Foss, O. Advan. Inorg. Chem. Radiochem. 2 (1960) 237. - 2. Foss, O. and Tjomsland, O. Acta Chem. Scand. 12 (1958) 1799. - 3. Jeffrey, G. A. and Shiono, R. Acta Cryst. 12 (1959) 447. - Hordvik, A. Acta Chem. Scand. 15 (1961) 1186; 17 (1963) 2575. Hordvik, A. Acta Chem. Scand. 14 (1960) 1218; 20 (1966) 754. - 6. Hordvik, A. and Kjøge, H. M. Acta Chem. Scand. 19 (1965) 935. - 7. Hordvik, A. Acta Chem. Scand. 19 (1965) 1039. - 8. Hordvik, A. and Joys, S. Acta Chem. Scand. 19 (1965) 1539. - 9. Hordvik, A. and Sletten, E. Acta Chem. Scand. 20 (1966) 1874. - Bergson, G. Arkiv Kemi 19 (1962) 181. Foss, O. Acta Chem. Scand. 10 (1956) 868. - 12. Hordvik, A. and Sundsfjord, J. Acta Chem. Scand. 19 (1965) 753. - 13. Wilson, A. J. C. Nature 150 (1942) 152. - 14. Mair, G. A. Structure Factors and Least Squares Programs for the IBM 1620, Pure Chemistry Division, National Research Council, Ottawa, Canada 1963. 15. Cruickshank, D. W. J. Acta Cryst. 9 (1956) 754. - 16. Hirshfeld, F. L., Sandler, S. and Schmidt, G. M. J. J. Chem. Soc. 1963 2108. - 17. Cruickshank, D. W. J. Acta Cryst. 9 (1956) 757. - 18. Foss, O. and Tjomsland, O. Acta Chem. Scand. 12 (1958) 1810. - 19. Abrahams, S. C. Quart. Rev. (London) 10 (1956) 407. - 20. Hordvik, A. Acta Chem. Scand. 20 (1966) 1885. - 21. Pauling, L. The Nature of the Chemical Bond. 3rd. Ed., Cornell University Press, Ithaca, New York 1960. - 22. Bak, B., Hansen-Nygaard, L. and Rastrup-Andersen, J. J. Mol. Spectry. 2 (1958) 361. Received March 26, 1966.